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Abstract 

A comprehensive account of the emerging concept of dispersion of heat along the axial direction as a fluid flows 
through a passage bounded by solid wall has been presented with its most recent and remarkable advancement. This 
new proposition takes axial dispersion as a disturbance which propagates as a wave with a finite velocity. It has been 
proposed that this sound like propagation be named as the “third sound wave in flowing fluid”. The fundamental 
analysis of this theory has been presented with particular emphasis on the boundary condition which plays a key role 
in the propagation of the wave. A general flux formulation has been used for this purpose. Analysis has also been 
presented for a two fluid situation. It has been found that the ‘subsonic’ and ‘super sonic’ flow with respect to third sound 
wave behave difFerently particularly at entry and exit. The theoretical background developed has been substantiated by 
three examples-one purely theoretical condition, one comparison with numerical analysis and finally application to a 
complete apparatus. it’ 199X Elsevier Science. All rights reserved. 

Nomenclature 
A parameter, equation (44) 
a fluid diffusivity based on dispersion = ;z; [m’ s ‘1 

I’ 
a* a Auid diffusivity based on molecular conduction, 
[m’ s ‘1 
a, thermal diflusivity of the wall 
B,, & breadth of the flow channels, Fig. 5 [m] 

Md, 
B’ parameter = ~-~~ 

W(‘,’ 
C’ propagation velocity of third sound wave [m s ‘1 
(‘P specific isobaric heat capacity of the fluid 
[J kg-’ Km ‘1 
c‘,, second sound velocity in wall [m s ‘1 
l’, specific heat of the solid wall [J kg ’ K ‘1 
n parameter. equation (44) 
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F area 
F(.v) Laplace transform of the input temperature func- 
tion 
h specific enthalpy [J kg- ‘1 

H the operator cl + :;i;) 

L length of the apparatus [m] 
M 
ril 

third sound math number. + 
fluid flow rate [kg s ‘1 

l?zr mass of hold up fluid in the apparatus [kg] 

NTC’ number of transfer units = --?t- 
liK, 

II‘ * L rkp L 
PC dispersive P&let number = ~~ = ifs 

11 i 9 
PC, conductive P&let number of the fluid 

\,,L rile, L 

(I* i* * F 

4 heat flux [$ mm ‘1 
QX dispersive axial heat flux [W m ‘1 
4, convective heat flux from (or to) the wall [W m ‘1 
R tube radius [m] 
s transformed time in frequency domain 
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T temperature [K] 
AT temperature rise (or drop) [K] 
A r,,, mean temperature difference [K] 
AT,, rise of adiabatic mixing temperature [K] 

perimeter [m] 
fluid velocity [m s- ‘1 
spatial coordinate. flow length [m] 
parameter, equation (48) 
parameter. equation (48) 

TI,‘ 
dimensionless time = 7;. 

Greek .sdd.s 
Y convective heat transfer coefficient [W m ’ K ‘1 

i 
;‘,, conduction parameter for wall = 

Lp,,c’,,n’ 

(5, thickness of the plates [m] 
< dimensionless space coordinate = Y. 1, 
t/ slenderness of the tube. R/L 7.- T 
3 dimensionless temperature = 7. emu 7: 

II) .I, 
1. axial dispersion coefficient [W 111 ’ K ‘1 
i.* thermal conductivity [W m ’ K ‘1 
i, density [kg rn-~ ‘1 
5 time [s]. 

SL1h.sc~r;pl.t 

ad adiabatic 
at initial (atmospheric) 
c cold 
11 I101 

in inlet 
out outlet 
q cross-section 
s surface 
w wall 
Y in the axial (x) direction 
I channel I 
2 channel 2. 

Supcrscript,~ 
+ just after 
- just before 
* molecular value 
( ) Laplace transformed 

1. Introduction 

Both steady state and transient response of heat 
exchangers have received considerable attention during 
the last decade. On one side the steady state analyses [I 
31 have stressed the need for theoretical and experimental 
evaluation of heat exchanger performance during normal 
operation. On the other hand the transient studies [448] 
have brought out the response features due to off-normal 

behaviour which are of immense importance for impart- 
ing proper control strategy [9]. Even though the advent 
of high speed computing systems has made the complete 
numerical simulation of heat exchangers possible, still 
the need for simpler and more accurate simulation of 
temperature response remains equally important because 
the numerical simulations are too complex to be directly 
used for the purpose of design or control of heat 
exchangers. A significant breakthrough in this direction 
has been achieved using the concept of apparent axial 
dispersion phenomenon in mass transfer during turbulent 
flow [lo]. From heat and mass transfer analogy it is 
established [I I. 121 that the same concept can be used for 
heat transfer as well. The studies [l-8] attribute all the 
contribution for the deviation from conventional plug 
flow such as backmixing. recirculation. leakage. bypass- 
ing. flow maldistribution and stagnation to an axial heat 
dispersion. The essence of this dispersion model is plug 
tlou with an apparent diffusive flux propagation through 
the fluid due to the above deviations from normal plug 
flow, which can be represented by a conduction like 
diffusive flux equation. as 

rj = -- iVT. (1) 

The major difference between this apparent COII- 

ductivity i and the real conduction in fluid is that the 
apparent conductivity i is a function of macroscopic flow 
parameters because its origin lies also in macroscopic 
non-idealities. On the other hand fluid conduction is a 
molecular phenomenon and is a microscopic property of 
fluid itself. 

The apparent conduction equation (1) based ml the 
Fourier Ia\+ assumes an infinite propagation velocit) of 
the thermal wave which makes it diffusive in nature to 
result in a parabolic temperature equation, 

Chester [I 31 proposed a ‘non-Fourier’ (also known as 
‘hyperbolic’ or ‘wave’) model of conduction which was 
found to be of practical importance at near absolute zero 
temperature. This formulation assumes a heat flux in the 
form 

resulting in a hyperbolic temperature equation for one- 
dimensional transient conduction 

(4) 

It is important to note that the relaxation time given 
by tr*“,P approaches zero as the velocity of propagation 
for thermal wave approaches infinite reducing the hyper- 
bolic conduction equation (4) to the conventional para- 
bolic one [equation (2)]. However, it seems to be logical 
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to differentiate the molecular conduction from axial dis- 
persion from the viewpoint of the propagation velocity. 
The axial dispersion is a physical disturbance which 
propagates through the fluid and hence cannot propagate 
at infinite speed. 

An extension of the conventional axial dispersion 
model for heat exchangers taking into account a finite 
propagation velocity of the axial dispersion by incor- 
porating Chester’s constitutive equation (3) applied to a 
fluid flowing with a given mean velocity was first pro- 
posed by Roetzel and Spang [ 14, 151. This model contains 
as a second parameter the finite propagation velocity 
which may be termed as the ‘third sound wave in a flowing 
fluid’ (second being the molecular conduction). 

Shortly after Roetzel and Spang [ 14. IS] and inde- 
pendently of them Westerterp rl (11. [16, 171 developed 
and analysed a similar model for longitudinal mass dis- 
persion in chemical reactors, Based on an elaboration of 
dispersion of a solute in laminar flow following Taylor’s 
approach [ 181 they arrived at a more general wave model. 
Compared to Chester’s equation (3) their constitutive 
equation for the dispersion flux (in their case mass dis- 
persion) additionally contains the derivative of the source 
term (in their case chemical reactions) with respect to the 
driving force (in their case concentration) and a third 
parameter for velocity asymmetry. Westerterp and co- 
workers subsequently applied their wave model to tubu- 
lar reactors [19, 201. 

Further work has also been done in applying the wave 
model to heat exchangers [21. 221. The wave like propa- 
gation of dispersion with finite velocity was based on a 
discrete study in a plate exchanger without paying much 
attention to the boundary conditions [2 11 which appears 
to be of immense importance. Also it was presented from 
a purely logical approach without any direct proof val- 
idating such behaviour. 

The present study brings out a more comprehensive 
background for the wave model of the propagation of 
dispersion in the form of a third sound wave along with 
the ‘subsonic’ and ‘supersonic’ behaviour at boundary. 
Different examples are presented to validate and reiterate 
the necessity of taking the finite propagation velocity of 
the dispersion wave into consideration which is estab- 
lished with physical reasoning. The concept of a third 
sound will not only revolutionise the study of thermal 
equipment but will also help to look at all thermal 
hydraulic phenomena with a new point of view. It is 
important to mention here that the two predominant 
ways of analysis of thermal hydraulic phenomena are (i) 
experimental, which in many cases are too empirical and 
difficult to theorise and (ii) numerical. which is too theor- 
etical due to a stream of assumptions associated with it. 
The present development can act as a bridge between the 
two approaches. The parameters associated with third 
sound wave can be determined from experiment and sim- 
ple analysis can be carried out to put the experimental 
findings into proper theoretical perspective. 

1 .l. The,fimdumentals of/he ‘zhird sound wave’ 

To derive the fundamental equations for this third 
sound wave in the form of finite propagation velocity of 
dispersion wave, a stationary horizontal column of fluid 
in a channel is considered as shown in Fig. 1. First the 
second sound wave in the form of heat conduction (since 
the fluid is stationary) is taken into account. With con- 
stant properties a one-dimensional analysis with lateral 
heat transfer from wall can be carried out by energy 
balance over the elemental fluid volume as shown in Fig. 
1 to give 

With the fluid flowing though the tube this equation can 
be transformed to the third sound wave equation due to 
dispersion neglecting the molecular conduction in fluid 
which is of much lower order than dispersion. This can 
be effected first by replacing the partial time derivative 
by the substantial differential operator 

D i; i 

where a constant axial velocity 14’ is assumed for the 
fluid. Multiplying the transformed equation (5) with the 
hyperbolic operator [22] 

and utilizing equation (3), the original equation (5) can 
be written as [21]. 

G-3) 

The conduction related quantities like i,, (I and C are due 
to the apparent conduction or the axial dispersion in 
fluid. The convective flux g$ given in this equation could 

A= const 

I- 
h 

X 

Fig. 1. Schematic of fluid column used for analysis. 



also be modelled as a hyperbolic flux which physically 
introduces a delay period near the wall in the form 

qrf$+(Tw-T). \ 
This not only makes the analysis complex but brings 

out a new definition of convective heat transfer coefficient 
through equation (9). As such determination of heat 
transfer coefficient is one of the most complex problems 
of heat transfer, changing its definition will lead to a 
situation where no available data of century old studies 
can be useful. Moreover, since the delay at the wall comes 
out of the molecular conduction in the adjacent ‘no slip’ 
layer of fluid its magnitude is much less than the dis- 
persive delay. Hence this can be neglected and the usual 
definition of convective heat flux can be used in the form 

cjs = cc(T,- T). 

This results in a fluid equation of 

(10) 

(11) 

The summation sign I: is introduced in front of the 
heat transfer term because the fluid can wet more than 
one wall, e.g. the shell and the tubes in a shell-and-tube 
heat exchanger. 

The axial diffusive flux in the form of conduction can 
be used to model solid wall temperature where the equa- 
tion (5) holds true and if a hyperbolic model is used in 
the form of equation (3); it results 

where H, is the hyperbolic wall operator [22] given by 

However, this is of practical importance only at 
extremely low temperature or very fast transient pro- 
cesses such as impulse heating of fluid where the time 
scale matches with the relaxation time u,,/C:. 

In normal operations of relatively higher temperature 
and larger time scale the wall conduction propagation 
velocity & can be regarded infinite giving the known 
wall equation of 

The summation sign Z in equation (14) indicates that the 
wall can simultaneously be wetted by more than one fluid. 

Equations (11) and (14) are the coupled wall and fluid 
equations which can be used for any heat transfer appar- 
atus carrying fluids in conduits or channels and exchang- 
ing heat with the solid walls in contact. Thermal regen- 
erators, recuperative heat exchangers consisting of tubes, 
plates or fins are the most important examples. A more 
detailed set of equations taking time delays for heat trans- 
fer and wall heat conduction into account is given in [22]. 
However, equations (I 1) and (14) are sufficient in all 
practical cases. 

1.2. The dispcwiw P&let and Mach numbers 

The equations (1 I) and (14) can be non- 
dimensionalized by introducing a dispersive P&let num- 
ber 

(15) 

and a dispersive math number 

(16) 

Since the dispersive wave propagates as a third sound 
wave it is reasonable to use the term math number for it. 

With these and other normal dimensionless parameters 
the two equations (I 1) and (14) reduce to : 

For steady state situations equation (17) reduces to 

M’-] p;g 

Pe (‘;’ 
+ 

and equation ( 18) to 

(20) 

1.3. The boundayv conditions 

The boundary conditions with third sound wave 
propagation is rather complex. A unique equation cannot 
be derived for the whole flow regime as in parabolic 
dispersion popularly known as the Danckwerts [23] 



boundary condition. Considering the propagation vel- 
ocity of third sound wave in the fluid, the flow regime 
can be divided into subsonic, sonic or supersonic regimes 
according to the conditions M c: 1, M = I or M z 1. 
respectively. 

The behavioural difference at subsonic and supersonic 
flow with respect to dispersive math number results from 
the relative importance of the causes of dispersion. The 
subsonic condition (M < I) is valid for real conduction, 
mass diffusion or axial mixing known as backmixing. The 
supersonic condition (M > I) is of importance when it is 
not a real but a virtual mixing process such as mal- 
distribution which is likely to travel with a propagation 
velocity below or of the order of fluid velocity. 

1.4. Case 1. M < 1 

This is the boundary condition used so far in the litera- 
ture [21]. This can be looked upon as an extension of 
Dankwerts [23] boundary condition. According to this 
model, the fluid senses a sudden temperature change at 
the entry where the dispersion is assumed to begin. This 
temperature change (T,; - r,+,) is inversely proportional 
to the P&let number for parabolic dispersion but in case 
of hyperbolic model the corresponding equation can be 
derived assuming an adiabatic nondispersive flow in the 
conduit before the entry to the apparatus. This gives an 
axial heat flux of zero before the entry. After the entry 
the temperature change can be calculated by carrying out 
an energy balance at the entry section as 

F,, q:,,, + ridl;, = rid,; (21) 
Neglecting any pressure change of the real fluid in the 

inlet cross-section and choosing an appropriate mean 
value for c,, between T,: and T,;, the heat flux just after 
the entry can be derived as 

K,” = “‘P’J T,;, - T,Yl ). c-4 
Using the third sound wave formulation for axial dis- 
persive heat flux as per equation (3) after applying oper- 
ator H to equation (22), yields 

but (DT,;/Dz) = 0 since the channel is adiabatic and 
nondispersive before entry hence we get the final form of 
boundary condition 

By nondimensionalising this can be reduced to 

It is very easy to examine that as the dispersive math 
number, M -+ 0 (which means the velocity of third sound 

wave approaches infinity) the boundary condition 
reduces to normal Danckwerts boundary condition. At 
the outlet the usual zero slope condition can be used. 

1.5. Case 2. M > I 

The supersonic boundary condition with respect to 
third sound wave is somewhat different and complex. In 
the subsonic regime the disturbance comes first and then 
comes the fluid hence an observer moving with the fluid 
comes across the temperature drop at entry which has 
already taken place due to dispersion. In supersonic case 
the situation is analysed as follows. 

The general flux equation (5) is valid for both Fourier 
and non-Fourier type dispersion law. The non Fourier 
law for dispersion can be obtained by using the hyper- 
bolic law for dispersion and replacing (Sidr) by (Dins). 
The substantial derivative is used because the changing 
temperature field due to dispersion comes to an observer 
who moves along with the fluid. This results in a flux 
equation 

When the moving observer crosses the entry section he 
suddenly marks a change in the dispersion characteristic 
where the dispersion parameter 1, attains a finite positive 
value from the previous value of 0 (no dispersion in 
the leading channel). Therefore. at .I- = O-, ,I = 0 giving 
cjA = 0 and at x = 0 ’ . ;. > 0 

So, in the space domain the heat flux shows a change 
as shown in Fig. (2). However. the hyperbolic law intro- 

- 

0 X 

Fig. 2. Change of heat flux at the entry of the channel 
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duces a delay in the heat flux and hence the flux does not 
come to the entry position giving still a zero flux at 
Y = 0. This is analogous to an inductive resistance in an 
electrical circuit. This means at x = 0 ’ , yX = 0 giving 

Thus for a static observer at .X = 0. always 

YYl,di = 0. 

This makes the operator 

D’ 6 
= M’--- 

Dr \=o+ ax y=(,’ 

reducing equation (28) to 

(74, iK” ST 
= 

is r-0’ UM’ 8-Y 

(28) 

Substitution of this flux value to the general flux equa- 
tion (26) results 

This can be reduced to the dimensionless form 

(30) 

In fact this can be stated as the first boundary condition 
at entry while the second being 

T,, = T, (32) 

This means for the supersonic case two boundary con- 
ditions at entry and none at exit. This can be explained 
in the light that for M > I the hyperbolic law is a one way 
behaviour and hence there is no feedback of information 
from the exit to the entry unlike the subsonic case. Tem- 
perature profiles are sketched in Fig. (3) fol- both the 
boundary conditions. 

c> w I c-+w ~ cc w 

-if%- ITIY. 
0 x 0 X 0 x 

Fig. 3. The temperature sketch at entry for different ranges of 
third sound Mach number. 

1.6. Exit conditions : A speciui consideration 

The boundary condition at exit also seems to be influ- 
enced by dispersion but this is not required for the cal- 
culation of temperature profile for supersonic condition 
(M > 1) as explained in the preceding section. Whatever 
may be the dispersive math number, an energy balance 
assuming no dispersion in the adiabatic channel taking 
the fluid axial heat flux due to dispersion, gives 

vpF, (Cut -I-,,,,) = F&l,, (33) 

The calculation of(iX at exit can be done from the hyper- 
bolic law for dispersion as in equation (3), giving 

- L ? Ti is 

This can be expanded and approximated taking only 
the first two terms as 

yielding 

Substitution of this equation to equation (33) yields 

This can be nondimensionalized to 

T;t,, - T,;,,, = - ; (38) 

This equation results in a temperature jump at the exit as 
shown in Fig. (4). Since in reality such a temperature 
jump at exit is not likely to be encountered, it requires a 
physically sound explanation. 

The temperature jump at the exit is in reality no tem- 
perature change but the transfer from the spatial mean 
temperature at the end of the heat transfer surface (e.g. 
the arithmetic mean of all tubeside outlet temperatures 
in a tube bundle) to the adiabatic mixing temperature in 
the outlet cross-section. 

The longitudinal temperature profile in the exchanger 
according to the dispersion model represents the spatial 
mean temperature which is decisive for the mean heat 
flux in a plug flow cross-section. This temperature is 
shown in Fig. (4) as a solid line. The dotted line represents 
the adiabatic mixing temperature which has to be used 
for plug flow in the one-dimensional energy equation. 
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temperature iump 

X X X 

temDerature 

outlet outlet 

iump 

X 

a) 

driving temperature 
difference 

wall /\ 

\/’ 
adiabatic mixing 
temperature 

b) 

adiabatic mixing 

Fig. 4. The temperature jump at exit : (a) heated fluid ; (b) cooled fluid 

But this temperature is not the driving force for heat 
transfer. In the outlet cross-section both temperatures 
are reunited because one mean velocity and one mean 
temperature can be assumed. 

To illustrate the difference between these two tem- 
peratures let us consider two streams of fluid with vel- 
ocities W, and M?? flowing though two channels of width B, 
and Bz respectively as shown in Fig. (5). The temperature 
change for similar thermal boundary conditions for the 
channel (e.g. constant wall heat flux) can be found to be 

AT, > AT2 for )I’, < n2. 

The spatial mean temperature at the end can be calculated 
as 

AT,,(B, +&) = AT,B, +AT2Br. (3’3) 

The adiabatic mixing temperature must take care of the 
velocities yielding 

Fig. 5. Fluid Rowing through two adjacent channels with differ- 
ent temperature and velocity-demonstration of the difference 
between mean and adiabatic mixing temperature. 

Hence the difference between spatial mean temperature 
and adiabatic mixing temperature can be derived as 

AT,,-AT.,, =(AT, -AT?) 

Since both the terms in the right hend side of this 
equation have the same sign hence it can be inferred that 
the spatial mean temperature changes faster than the 
adiabatic mixing temperature. The case is changed for a 
fluid losing heat. The sketch of the two temperatures in 
this case is shown in Fig. 4(b). 

2. Examples, results and discussion 

Based on the theoretical foundation of the ‘third sound 
wave’ formulation the results of some specific examples 
have been calculated. It has been applied to simple cases 
such as a laminar flow though tube as well as complex 
flow patterns such as a multiple channel plate and frame 
heat exchanger. 

2.1. Ewmplc I : Heut tronsfrr due to laminur ,jow in a 

tube 

This simple case is chosen to exhibit the strength of the 
sound wave formulation of axial dispersion. Here the 
flow is assumed to take place in an adiabatic tube The 
conduction in the tube wall is neglected since the tube is 
considered to be thin. Fluid properties such as specific 
heat and dispersion coefficients and also the third sound 
math number are considered to be constant. Under such 

assumptions the equation (I 7) is valid for the fluid. 
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The wall temperature is described by 

i?Q* 
B& = NTU(S-9,) 

where 

(421 

and 

(43) 

Equations (17) and (I 8) with ;‘,+ = 0 can be solved by 
using the boundary conditions. Calculations have been 
done for subsonic case using boundary condition of equa- 
tion (25). The solution is derived by using Laplace trans- 
formation in the form : 

-(A+D)eD 
I-M’ 

I - Pc-+(Mi(A -II) II 
where 

This can be inverse transformed into time domain 
using Crump’s [24] algorithm which uses a complex Four- 
ier series approximation of the function. 

1.0 

0.9 

0.8 

9 
0.7 

out 
0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

I  

.-...+.-. Dispersion model 

- Analytical model 

The results have been calculated for different values of 
the dispersive math number. For comparison the exact 
solution of a two dimensional fully developed flow with 
parabolic velocity profile has been considered. Figure (6) 
shows that the M = I solution agrees well when the radial 
heat conduction characterised by t$Pe,~ is small and 
consequently the dispersive PCcIet number Pe is large. 
For larger dispersion (i.e., smaller Pe) q2Pe,, is larger as 
given in [25]. In Fig. 7 it is observed that for a value of 
IO for t$PeL the dispersive P&let number of 8.5 and a 
third sound math number of M = 1 gives more satis- 
factory result than with M = 0. This indicates one more 
important inference that the guessed paradigm of third 
sound wave propagation velocity of the order of fluid 
velocity is perfectly justified and under the action of 
strong dispersion it is important to consider the third 
sound wave in fluid. 

2.2. Ikmple 2 : I@initcly Inry udiahatic channel 

The second example chosen to suggest the third sound 
effect is an adiabatic channel of infinite length initially 
at constant temperature 9 = 0. At .x = 0 suddenly the 
temperature is changed to 3 = 1 (at time, z = 0). The 
channel under consideration is of length L which is the 
part of an infinitely long one. The equation for such a 
channel without heat transfer with the wall is 

(45) 

Fig. 6. Transient temperature response of a fluid flowing through an adiabatic tube. Comparison with hyperbolic dispersion (M = I). 
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0.8 

FIN. 7. Transient response for flow through a tube with large dispersion ($ Pe, = 10). I. analytical model. 2. 
model (M = 0. Pr = 8.5) and 3. third sound model (M = I, Pe = X.5). 

parabolic dispersion 

The boundary and initial conditions are 

3(2 > 0, j” + M_) = 0 

9(:>0,<--w;)=l 

,Y(r = 0. < 3 0) = 0 

3(2 > 0, 5 < 0) = 1 

and 

(46) 

The equation (45) which is normally named as tele- 
graphic equation can be solved analytically to give the 
temperature at exit, as 

(47) 

where 

(48) 

cp(.s) = 
0 for<<0 

1 forc>O’ 

The solutions are plotted in Figs. 8 and 9 for large 
(Pe = 5) and small (Pu = 100) magnitudes of dispersion. 
It is important to note that the temperature response of 
the parabolic dispersion model (M = 0), where the third 
sound velocity is infinitely large, shows a smooth and 
gradual rise while for a finite third sound velocity it sud- 
denly rises to a finite value. Not only at the time of 
beginning but also at the end the temperature suddenly 
rises to its final value in the case of a supersonic flow. 
This clearly demonstrates a wave like propagation of the 
dispersion. 

The nature and magnitude of the temperature jump 
depends on the dispersive P&let number and math num- 
bers as evident from the figures. The first jump can be 
calculated to occur at Y,] = 0, giving 

A4 
==Ms-I. (49) 

The magnitude of the jump being 

The second jump for M > 1 occurs at x0 = 0, giving 

M 

3=ET. (50) 

and 
Even though this case is a highly theoretical one it brings 
out the important features of a dispersion wave in 
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---c-;--L-L-i---- 
Pe=5 I 

t 

0.25 -1 

1+ 
0.0 0.5 1.0 1.5 2.0 2.5 

z 

1 
9 

Fig. 8. Temperature response of an infinitely long tube with large dispersion 

'"fr'-'---- 

0.50 ----------~- 

f  

0.25- 

Fig. 9. Temperature response of an infinitely long tube with near plug flow (small dispersion). 
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Fig. 10. Effect of third sound math number on sinusoIda temperature response of a plate heat 

.._ 
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0 2 4 6 8 10 

Z 

the form of third sound which can be studied by future 
investigators. 

It is worthwhile to reproduce the features of hyperbolic 
dispersion wave in a complete heat transfer apparatus as 
shown in ref. [21]. L’ and Z type plate heat exchangers 
have been simulated here considering a hyperbolic dis- 
persion in fluid taking the phase lag efl^ect at the channel 
entry and exit into consideration. The detailed math- 
cmatical formulation is presented elsewhere [II]. In 
responses due to temperature oscillation and step change 
at entry has been calculated by the model. For sinusoidal 
[Fig. (IO)] response the third sound math number is 
found to influence the result considerably which can 
probably be used to explain the mismatch between the 
experimental and computed results observed while using 
a parabolic dispersion with infinite propagation velocity 
of third sound wave [8]. More extensive experiments are 
underway to assess the heat transfer in a complete appar- 
atus with higher level of confidence. 

3. Summary and conclusion 

An exhaustive theoretical foundation has been laid in 
this paper for the recent developments in the studies 
regarding a wave like propagation of axial dispersion. 
The wave can be named as the third sound wave in fluid 
which results from disturbances which affect the so called 
‘plug flow’. The fundamental equations have been 
derived from first principles and they have been reduced 
to a usable form by reasoning the physical aspects. It has 
been found that theoretically the subsonic and supersonic 

exchanger. 

flows brings out two diRerent types of behaviours at the 
boundary which has been closely examined with physical 
explanation. Three different examples have been pre- 
sented : first, a simple practical flow condition ; second, a 
theoretical behaviour and third the application to a heat 
transfer apparatus. The examples demonstrate the 
validity. nature. characteristic and possibility of appli- 
cation to heat transfer equipment. 

Standing on the foundation of the theory presented 
here it is expected that the future investigations will con- 
centrate on 

(i) Experimental determination of parameters like 
dispersive P&let (PC) and Mach (M) numbers. 

(ii) Indirect determination PC and M from complete 
nulnericai simulation of heat transfer equipment and flow 
geometries. 

(iii) Suggesting proper modelling of PC and M in the 
form of algebraic or differential equations. which can be 
termed as ‘dispersion modelling’. 

(iv) From the calculated parameters as done in the 
previous suggestions [(i). (ii} and (iii)] simulate a total 
heat transfer equipment and carry out experiments to 
validate it. 
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